Skip to main content
SHARE
Publication

Bulk Assembly of Zero-Dimensional Organic Lead Bromide Hybrid with Efficient Blue Emission...

Publication Type
Journal
Journal Name
ACS Materials Letters
Publication Date
Page Numbers
594 to 598
Volume
1

Zero-dimensional (0D) organic metal halide hybrids are an emerging class of light emitting materials with exceptional photoluminescence quantum efficiencies (PLQEs), thanks to their perfect “host–guest” structures with light emitting metal halide species periodically “embedded” in a wide band gap organic cationic matrix through ionic bonds. However, achieving efficient blue emissions is challenging for this class of materials, as structural distortions of metal halides often lead to large Stokes shifts. Here we report a highly luminescent blue emitting 0D organic lead bromide, (C13H19N4)2PbBr4, with a peak emission of 460 nm (2.70 eV), a full width at half maximum (FWHM) of 66 nm (0.40 eV), a Stokes shift of 111 nm (0.85 eV), and a PLQE of ∼40%. Single crystal structure analysis shows that individual PbBr42– species adopt a near-seesaw structure, which are coordinated to benzyl-hexamethylenetetrammonium (C13H19N4+) organic cations. The relatively small Stokes shift as compared to those of previously reported 0D organic metal halide hybrids are attributed to the low chemical reactivity of Pb 6s2 lone pairs and the rigid organic cationic matrix. (C13H19N4)2PbBr4 also shows exceptional stability in air with little-to-no change of properties for more than a year in ambient conditions.