Skip to main content
SHARE
Publication

Carbon/tin oxide composite electrodes for improved lithium-ion batteries...

Publication Type
Journal
Journal Name
Journal of Applied Electrochemistry
Publication Date

Tin and tin oxide-based electrodes are promising high-capacity anodes for lithium-ion batteries. However, poor capacity retention is the major issue with these materials due to the large volumetric expansion that occurs when lithium is alloyed with tin during lithiation and delithiation process. Here, a method to prepare a low-cost, scalable carbon and tin(II) oxide composite anode is reported. The composite material was prepared by ball milling of carbon recovered from used tire powders with 25 wt% tin(II) oxide to form lithium-ion battery anode. With the impact of energy from the ball milling, tin oxide powders were uniformly distributed inside the pores of waste-tire-derived carbon. During lithiation and delithiation, the carbon matrix can effectively absorb the volume expansion caused by tin, thereby minimizing pulverization and capacity fade of the electrodes. The as-synthesized anode yielded a capacity of 690 mAh g−1 after 300 cycles at a current density of 40 mA g−1 with a stable battery performance.