Skip to main content
SHARE
Publication

Cellulose regulated lignin/cellulose-based carbon materials with hierarchical porous structure for energy storage

by Arthur J Ragauskas
Publication Type
Journal
Journal Name
Advanced Composites and Hybrid Materials
Publication Date
Page Number
51
Volume
7

Lignin has gained extensive attention as an ideal carbon precursor due to its abundance and high carbon content. However, the agglomeration of lignin and additional corrosive and unrecyclable reagents in direct pyrolysis still limit the development of lignin-based porous carbons. Herein, a facile and eco-friendly strategy was proposed to fabricate hierarchical porous lignin/cellulose-based carbon materials (LCs). In the process, cellulose nanofibrils acted as the skeleton of the bio-aerogels, which supported lignin and benefit the preparation of the LCs. Moreover, the specific surface area and the graphitization degree of LCs can be regulated by varying the cellulose content. Without activation, the bio-based carbon material (LC30) had a high specific surface area of 1770 m2 g−1, which displayed high specific capacitance of 216.2 F g−1 at the current density of 0.5 A g−1. The supercapacitor based on LC30 also showed outstanding energy density of 12.3 Wh kg−1 at the power density of 50 W kg−1. The sustainable raw material, simple and harmless preparation process, and remarkable electrochemical performance enable LC30, a promising supercapacitor electrode for energy storage.