Skip to main content
SHARE
Publication

Characterization of Cytochrome 579, an Unusual Cytochrome Isolated from an Iron-Oxidizing Microbial Community...

Publication Type
Journal
Journal Name
Applied and Environmental Microbiology
Publication Date
Page Numbers
4454 to 4462
Volume
74
Issue
14

Proteogenomic studies of Fe(II)-oxidizing microbial biofilms collected from an extremely acidic environment have identified a novel, soluble cytochrome as one of the most abundant proteins produced by these communities. This red cytochrome, extracted from biofilms with dilute sulfuric acid and purified by cation exchange chromatography, has an unusual visible spectral signature at 579 nm. Fe(II)-dependent reduction of Cyt579 was thermodynamically favorable at pH>3, raising the possibility that Cyt579 acts as an accessory protein for electron transfer. Transmission electron microscopy of immuno-gold labeled biofilm indicated that the Cyt579 is localized near the bacterial cell surface, consistent with periplasmic localization. Further protein analysis of Cyt579, using preparative chromatofocusing and SDS-PAGE, revealed three forms of the protein that correspond to different N-terminal truncations of the amino acid sequence. Intact protein analysis corroborated the post-translational modifications of these forms and identified a genomically uncharacterized Cyt579 variant. Homology modeling was used to predict the overall cytochrome structure and heme binding site; positions of nine amino acid substitutions found in 3 Cyt579 variants all map to the surface of the protein and away from the heme group. Based on this detailed characterization of Cyt579, we propose that Cyt579 acts an electron transfer protein shuttling electrons derived from Fe(II) oxidation to support critical metabolic functions in the acidophilic microbial community.