Skip to main content
SHARE
Publication

Chemical disorder and spin-liquid-like magnetism in the van der Waals layered 5d transition metal halide Os0.55Cl2...

by Michael A Mcguire, Qiang Zheng, Jiaqiang Yan, Brian C Sales
Publication Type
Journal
Journal Name
Physical Review B
Publication Date
Page Number
214402
Volume
99
Issue
21

Single crystals of the van der Waals layered 5d transition-metal compound Os0.55Cl2 were grown and characterized by x-ray diffraction, magnetization and heat-capacity measurements, and atomic resolution electron microscopy. The crystals are stable in air and easily cleaved. The structure is derived from the CdCl2 structure type, with triangular layers of transition metal sites coordinated by edge-sharing octahedra of Cl and separated by a van der Waals gap. On average, only 55% of the metal sites are occupied by Os, and evidence for short- and long-ranged vacancy orders is observed by diffraction and real-space imaging. Magnetization data indicate magnetocrystalline anisotropy due to spin-orbit coupling, antiferromagnetic correlations, and no sign of magnetic order or spin freezing down to 0.4 K. Heat-capacity measurements in applied magnetic fields show only a broad, field-dependent anomaly. The magnetic susceptibility and heat capacity obey power laws at low temperature and low field with exponents close to 0.5. The power law behaviors of the low-temperature heat capacity and magnetic susceptibility suggest gapless magnetic fluctuations prevent spin freezing or ordering in Os0.55Cl2. Divergence of the magnetic Gruneisen parameter indicates nearness to a magnetic quantum critical point. Similarities to behaviors of spin-liquid materials are noted, and in total the results suggest Os0.55Cl2 may be an example of a quantum spin liquid in the limit of strong chemical disorder.