Skip to main content
SHARE
Publication

Clutter Identification based on sparse recovery with dynamically changing dictionary sizes for cognitive radar...

Publication Type
Conference Paper
Journal Name
Proceedings of SPIE
Publication Date
Volume
10989
Publisher Location
United States of America
Conference Name
SPIE Defense + Commercial Sensing
Conference Location
Baltimore, Maryland, United States of America
Conference Sponsor
SPIE
Conference Date
-

Existing radar algorithms assume stationary statistical characteristics for environment/clutter. In practical scenarios, the statistical characteristics of the clutter can dynamically change depending on where the radar is operating. Non-stationarity in the statistical characteristics of the clutter may negatively affect the radar performance. Cognitive radar that can sense the changes in the clutter statistics, learn the new statistical characteristics, and adapt to these changes has been proposed to overcome these shortcomings. We have recently developed techniques for detection of statistical changes and learning the new clutter distribution for cognitive radar. In this work, we will extend the learning component. More specifically, in our previous work, we have developed a sparse recovery based clutter distribution identification to learn the distribution of the new clutter characteristics after the detected change in the statistics of the clutter. In our method, we have built a dictionary of clutter distributions and used this dictionary in orthogonal matching pursuit to perform sparse recovery of the clutter distribution assuming that the dictionary includes the new distribution. In this work, we propose a hypothesis testing based approach to detect whether the new distribution of the clutter is included in the dictionary or not, and suggest a method to dynamically update the dictionary. We envision that the successful outcomes of this work will be of high relevance to the adaptive learning and cognitive augmentation of the radar systems that are used in remotely piloted vehicles for surveillance and reconnaissance operations.