Abstract
We report the experimental generation of all four frequency-bin Bell states in a single versatile setup via successive pumping of spontaneous parametric down-conversion with single and dual spectral lines. Our scheme utilizes intensity modulation to control the pump configuration and offers turn-key generation of any desired Bell state using only off-the-shelf telecommunication equipment. We employ Bayesian inference to reconstruct the density matrices of the generated Bell states, finding fidelities ≥97% for all cases. Additionally, we demonstrate the sensitivity of the frequency-bin Bell states to common-mode and differential-mode temporal delays traversed by the photons comprising the state—presenting the potential for either enhanced resolution or nonlocal sensing enabled by our complete Bell basis synthesizer.