Skip to main content
SHARE
Publication

Continuous Flow Fabrication of Block Copolymer–Grafted Silica Micro‐Particles in Environmentally Friendly Water/Ethanol M...

by Piaoran Ye, Pengfei Cao, Qiyi Chen, Rigoberto Advincula
Publication Type
Journal
Journal Name
Macromolecular Materials and Engineering
Publication Date
Page Number
1800451
Volume
TBD
Issue
TBD

Polymer‐grafted inorganic particles (PGIPs) are attractive building blocks for numerous chemical and material applications. Surface‐initiated controlled radical polymerization (SI‐CRP) is the most feasible method to fabricate PGIPs. However, a conventional in‐batch reaction still suffers from several disadvantages, including time‐consuming purification processes, low grafting efficiency, and possible gelation problems. Herein, a facile method is demonstrated to synthesize block copolymer–grafted inorganic particles, that is, poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMEMA)‐b‐poly(N‐isopropylacrylamide) (PNIPAM)–grafted silica micro‐particles using continuous flow chemistry in an environmentally friendly aqueous media. Immobilizing the chain transfer agent and subsequent SI‐CRP can be accomplished sequentially in a continuous flow system, avoiding multi‐step purification processes in between. The chain length (MW) of the grafted polymers is tunable by adjusting the flow time or monomer concentration, and the narrower molar mass dispersity (Ð < 1.4) of the grafted polymers reveals the uniform polymer chains on the particles. Moreover, compared with the in‐batch reaction at the same condition, the continuous system also suppresses possible gelation problems.