Skip to main content
SHARE
Publication

A Coordinated Compensation Strategy for Module-Mismatch of CHB-PV Systems Based on Improved LS-PWM and Reactive Power Injecti...

by Cheng Wang, Kai Zhang, Jian Xiong, Yaosuo Xue, Wenxin Liu
Publication Type
Journal
Journal Name
IEEE Transactions on Industrial Electronics
Publication Date
Volume
TBD
Issue
TBD

The cascaded H-bridge (CHB) converter has become a promising candidate topology for utility-scale photovoltaic systems thanks to merits like modular structure, distributed maximum power point tracking (MPPT), and direct distribution grid access without medium-voltage transformers, etc. However, module-mismatches arising from non-ideal elements like partial shading and parameter variations pose a technical challenge for such systems. If not dealt with properly, module-mismatches can lead to adverse effects like unbalanced dc-link voltages of the modules, distortion of grid current, reduced power generation, etc. Conventional methods, such as reactive power compensation and level-shifted pulse-width modulation (LS-PWM) based compensation, can alleviate this issue, but their performances are still limited by the allowable modulation range of power converters. In this paper, a compensation strategy combining reactive power compensation with a novel modulation method is proposed to extend the operating range in terms of module mismatch. Experimental results on a 2.4kW/208V single-phase setup are presented and have demonstrated that the proposed method can not only ride through a larger range of module-mismatches but also improve solar power utilization and system efficiency owing to reduced switching events, non-compromised MPPT, and less required reactive power.