Skip to main content
SHARE
Publication

Deeply Integrated Vehicle Dynamic and Powertrain Operation for Efficient Plug-in Hybrid Electric Bus...

Publication Type
Conference Paper
Book Title
98th Annual Meeting of the Transportation Research Board
Publication Date
Page Number
03195
Volume
19
Conference Name
TRB Annual Meeting
Conference Location
Washington, District of Columbia, United States of America
Conference Sponsor
Transportation Research Board
Conference Date
-

The emerging connected and automated vehicle (CAV) technology has opened the door for developing innovative applications and systems to improve vehicle energy efficiency. While most of the recent research has been focused on optimizing vehicle dynamic (VD) and powertrain (PT) operation in isolation, there exists untapped potential to further improve vehicle fuel efficiency through a co-optimization of VD&PT control. In this paper, the authors develop an eco-operation solution for a plug-in hybrid electric bus (PHEB) which seamlessly integrates state-of-the-art CAV applications with advanced powertrain optimization strategies, aiming at improving vehicle energy efficiency and reducing tailpipe emissions. The proposed eco-operation system have 6 components, including traffic/signal timing information acquirement, information integration, scenario identification, powertrain, trajectory planning and a MATLAB/Simulink model for validation and fine-tuning. A deeply integrated vehicle dynamic and powertrain control algorithm is proposed in the paper to optimize the energy-efficiency. Based on the key logic of powertrain control strategy of PHEB, the authors develop a simplified PHEB powertrain model, and put it into their graph based optimization model as the edge cost to derive the optimal speed profile, which is further fine-tuned in the Simulink model. The proposed mode is validated in multiple numerical tests under Eco-Approach and Departure, Eco-Stop and Launch and Eco-Cruise scenarios, and shows significant performance (above 20%) in energy-saving.