Skip to main content
SHARE
Publication

DEVELOPMENT OF 20 IEER ROOFTOP UNITS – A SIMULATION STUDY...

by Bo Shen, Clifford K Rice, Edward A Vineyard
Publication Type
Conference Paper
Publication Date
Conference Name
International Refrigeration and Air Conditioning Conference at Purdue, July 16-19, 2012
Conference Location
West Lafayette, Indiana, United States of America
Conference Date
-

Based on detailed steady-state system and component modeling, we developed a rooftop unit system design, which is able to achieve IEER (Integrated Energy Efficiency Ratio) higher than 20. We modeled fin-&-tube and micro-channel heat exchangers using segment-to-segment approach, and use ARI 10-coefficient compressor map to simulate compressor performance. The system modeling is based on a component-based modeling approach, which facilitates flexible simulation of complicated system configurations. Starting with a baseline system having IEER of 16.6, we extensively investigated numerous technical options, i.e. varying compressor sizes, heat exchanger fin densities, fin-&-tube or micro-channel heat exchanger, suction line heat exchanger, desiccant wheel, tandem compressor, variable-speed compressor, and condenser evaporative pre-cooling; and developed an innovative system configuration combining a tandem compression system with a variable-speed compression system. The combined system can achieve high IEER as well as process the outdoor ventilation air over an extensive range. We successfully evaluated the design concept for a 20-ton unit as well as a 10-ton unit. All the selected components are readily accessible on the market, and we validated the performance predictions against existing RTU products at the rating condition. This paper illustrates a potentially cost-effective high IEER RTU design.