Skip to main content
SHARE
Publication

Direct measurement of the spin gap in a quasi-one dimensional clinopyroxene: NaTiSi2O6...

Publication Type
Journal
Journal Name
Physical Review B
Publication Date
Page Number
140402
Volume
90
Issue
14

True inorganic Spin-Peierls materials are extremely rare, but NaTiSi2O6 was at one time considered
an ideal candidate due to it having well separated chains of edge-sharing TiO6 octahedra. At
low temperatures, this material undergoes a phase transition from C2/c to P1 symmetry, where
Ti3+-Ti3+ dimers begin to form within the chains. However, it was quickly realized with magnetic
susceptibility that simple spin fluctuations do not progress to the point of enabling such a transition.
Since then, considerable experimental and theoretical endeavours have been taken to find the true
ground state of this system and explain how it manifests. Here, we employ the use of x-ray diffraction, neutron spectroscopy, and magnetic susceptibility to directly and simultaneously measure the symmetry loss, spin singlet-triplet gap, and phonon modes. A gap of 53(3) meV was observed, fit to the magnetic susceptibility, and compared to previous theoretical models to unambiguously assign NaTiSi2O6 as having an orbital-assisted Peierls ground state.