Skip to main content
SHARE
Publication

Effect of Varying the 1-4 Intramolecular Scaling Factor in Atomistic Simulations of Long-Chain N-alkanes with the OPLS-AA Mod...

by Valmor F De Almeida, Xianggui Ye, Shengting Cui, Bamin Khomami
Publication Type
Journal
Journal Name
Journal of Molecular Modeling
Publication Date
Page Numbers
1251 to 1258
Volume
19
Issue
3

A comprehensive molecular dynamics simulation study of n-alkanes using the Optimized Potential for Liquid Simulation-All Atoms (OPLS-AA) force field at ambient condition has been performed. Our results indicate that while simulations with the OPLS-AA force field accurately predict the liquid state mass density for n-alkanes with carbon number equal or less than 10, for n-alkanes with carbon number equal or exceeding 12, the OPLS-AA force field with the standard scaling factor for the 1-4 intramolecular Van der Waals and electrostatic interaction gives rise to a quasi-crystalline structure. We found that accurate predictions of the liquid state properties are obtained by successively reducing the aforementioned scaling factor for each increase of the carbon number beyond n-dodecane. To better un-derstand the effects of reducing the scaling factor, we analyzed the variation of the torsion potential pro-file with the scaling factor, and the corresponding impact on the gauche-trans conformer distribution, heat of vaporization, melting point, and self-diffusion coefficient for n-dodecane. This relatively simple procedure thus allows for more accurate predictions of the thermo-physical properties of longer n-alkanes.