Skip to main content
SHARE
Publication

Effects of Electric Field and Biaxial Flexure on the Failure of Poled Lead Zirconate Titanate...

by Hong Wang, Andrew A Wereszczak
Publication Type
Journal
Journal Name
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Publication Date
Page Numbers
2559 to 2570
Volume
55
Issue
12

Reliable design of lead zirconate titanate (PZT) piezo stack actuators demands that a number of issues, including electromechanical coupling and ceramic strength-size scaling, be scrutinized. This study addresses those through the use of ball-on-ring (BoR) biaxial flexure strength tests of a PZT piezoelectric material that is concurrently subjected to an electric field. The Weibull strength distributions and fracture surfaces were examined. The mechanical failures were further analyzed in terms of internal stress, energy release rate, and domain-switching toughening. Both the sign and the magnitude of an electric field had a significant effect on the strength of poled PZT within the tested range. A surface flaw type with a depth of ~18 ��m was identified to be the strength limiter and responsible for the failure of the tested PZT under both mechanical and electromechanical loadings. With ~0.74 in the absence of electric field, the fracture toughness of the poled PZT was affected by an applied electric field just as the strength was affected. These results and observations have the potential to serve probabilistic reliability analysis and design optimization of multilayer PZT piezo actuators.