Skip to main content
SHARE
Publication

Effects of helium on irradiation response of reduced-activation ferritic-martensitic steels: Using nickel isotopes to simulat...

Publication Type
Journal
Journal Name
Journal of Nuclear Materials
Publication Date
Page Number
152634
Volume
545

Understanding the effects of helium on microstructures and mechanical properties of reduced-activation ferritic-martensitic steels is important to use of these steels in fusion reactor structures. The 9Cr-2WVTa steels were doped with 58Ni and 60Ni isotopes at 2 weight percent to control the rate of transmutation helium generation. The samples were irradiated in the High Flux Isotope Reactor to ~24 displacements per atom at nominal temperatures of 300, 400, and 500°C, producing 228 and 7 atomic parts-per-million helium in the 58Ni- and 60Ni-doped samples, respectively. Transmission electron microscopy revealed a variety of precipitates and the radiation-induced dislocation loops and cavities (voids or helium bubbles). Tensile tests of the irradiated samples at the irradiation temperatures showed radiation-induced hardening at 300°C and radiation-induced softening at 400°C. Analysis indicates that the hardening primarily originated from the loops and cavities. The 58Ni-doped samples had greater strengthening contributions from loops and cavities, leading to higher hardening with lower ductility than the 60Ni-doped samples. The greater helium production of 58Ni did not show pronounced reductions in ductility of the samples.