Skip to main content
SHARE
Publication

Efficient Hot Electron Transfer from Small Au Nanoparticles...

by Yawei Liu, David A Cullen, Tianquan Lian
Publication Type
Journal
Journal Name
Nano Letters
Publication Date
Page Numbers
4322 to 4329
Volume
20
Issue
6

Many important chemical transformations enabled by plasmonic hot carrier photocatalysis have been reported, although their efficiencies are often too low for practical applications. We examine how the efficiency of plasmon-induced hot electron transfer depends on the Au particle size in Au-tipped CdS nanorods. We show that with decreasing Au size, the plasmon width increases due to enhanced surface damping contributions. The excitation of Au nanoparticles leads to an instrument response time-limited ultrafast hot electron transfer process to CdS (≪140 fs). The quantum efficiency of this process increases from ∼1% to ∼18% as the particle size decreases from 5.5 ± 1.1 to 1.6 ± 0.5 nm due to both enhanced hot electron generation and transfer efficiencies in small Au particles. Our finding suggests that decreasing plasmonic particle size is an effective approach for improving plasmon-induced hot carrier transfer efficiency and provides important insight for the rational improvement of plasmonic hot carrier-based devices.