Skip to main content
SHARE
Publication

Electrical Control of near-Field Energy Transfer between Quantum Dots and Two-Dimensional Semiconductors...

Publication Type
Journal
Journal Name
Nano Letters
Publication Date
Page Numbers
4374 to 4380
Volume
15
Issue
7

We investigate near-field energy transfer between chemically synthesized quantum dots (QDs) and two-dimensional semiconductors. We fabricate devices in which electrostatically gated semiconducting monolayer molybdenum disulfide (MoS2) is placed atop a homogeneous self-assembled layer of core-shell CdSSe QDs. We demonstrate efficient nonradiative Forster resonant energy transfer (FRET) from QDs into MoS2 and prove that modest gate-induced variation in the excitonic absorption of MoS2 leads to large (-500%) changes in the FRET rate. This in turn allows for up to similar to 75% electrical modulation of QD photoluminescence intensity. The hybrid QD/MoS2 devices operate within a small voltage range, allow for continuous modification of the QD photoluminescence intensity, and can be used for selective tuning of QDs emitting in the visible-IR range.