Skip to main content
SHARE
Publication

Electronic band contraction induced low temperature methane activation on metal alloys...

by Victor Xinhua Fung, Guoxiang Hu, Bobby G Sumpter
Publication Type
Journal
Journal Name
Journal of Materials Chemistry A
Publication Date
Page Numbers
6057 to 6066
Volume
8
Issue
12

The catalytic conversion of methane under mild conditions is an appealing approach to selectively produce value-added products from natural gas. Catalysts which can chemisorb methane can potentially overcome challenges associated with its high stability and achieve facile activation. Although transition metals can activate C–H bonds, chemisorption and low-temperature conversion remain elusive on these surfaces. The broad electronic bands of metals can only weakly interact with the methane orbitals, in contrast to specific transition metal oxide and supported metal cluster surfaces which are now recognized to form methane σ-complexes. Here, we report methane chemisorption can, remarkably, occur on metal surfaces via electronic band contraction and localization from metal alloying. From a broad screening including single atom and intermetallic alloys in various substrates, we find early transition metals as promising metal solutes for methane chemisorption and low-temperature activation. These findings demonstrate a combinatorial diversity of possible candidates in earth abundant metal alloys with this attractive catalytic behavior.