Skip to main content
SHARE
Publication

Entanglement-based quantum digital signatures over a deployed campus network...

by Joseph C Chapman, Muneer Alshowkan, Bing Qi, Nicholas A Peters
Publication Type
Journal
Journal Name
Optics Express
Publication Date
Page Numbers
7521 to 7539
Volume
32
Issue
5

The quantum digital signature protocol offers a replacement for most aspects of public-key digital signatures ubiquitous in today’s digital world. A major advantage of a quantum-digital-signatures protocol is that it can have information-theoretic security, whereas public-key cryptography cannot. Here we demonstrate and characterize hardware to implement entanglement-based quantum digital signatures over our campus network. Over 25 hours, we collect measurements on our campus network, where we measure sufficiently low quantum bit error rates (<5% in most cases) which in principle enable quantum digital signatures at over 50 km as shown through rigorous simulation accompanied by a noise model developed specifically for our implementation. These results show quantum digital signatures can be successfully employed over deployed fiber. Moreover, our reported method provides great flexibility in the number of users, but with reduced entanglement rate per user. Finally, while the current implementation of our entanglement-based approach has a low signature rate, feasible upgrades would significantly increase the signature rate.