Skip to main content
SHARE
Publication

Evaluation of OpenAI Codex for HPC Parallel Programming Models Kernel Generation

by William F Godoy, Pedro Valero Lara, Keita Teranishi, Prasanna Balaprakash, Jeffrey S Vetter
Publication Type
Conference Paper
Book Title
ICPPW '23: Proceedings of the 52nd International Conference on Parallel Processing Workshops
Publication Date
Page Numbers
136 to 144
Publisher Location
New York, New York, United States of America
Conference Name
The 52nd International Conference on Parallel Processing (ICPP)
Conference Location
Salt Lake City, Utah, United States of America
Conference Sponsor
Association for Computing Machinery (ACM)
Conference Date
-

We evaluate AI-assisted generative capabilities on fundamental numerical kernels in high-performance computing (HPC), including AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG. We test the generated kernel codes for a variety of language-supported programming models, including (1) C++ (e.g., OpenMP [including offload], OpenACC, Kokkos, SyCL, CUDA, and HIP), (2) Fortran (e.g., OpenMP [including offload] and OpenACC), (3) Python (e.g., numpy, Numba, cuPy, and pyCUDA), and (4) Julia (e.g., Threads, CUDA.jl, AMDGPU.jl, and KernelAbstractions.jl). We use the GitHub Copilot capabilities powered by the GPT-based OpenAI Codex available in Visual Studio Code as of April 2023 to generate a vast amount of implementations given simple <kernel> + <programming model> + <optional hints> prompt variants. To quantify and compare the results, we propose a proficiency metric around the initial 10 suggestions given for each prompt. Results suggest that the OpenAI Codex outputs for C++ correlate with the adoption and maturity of programming models. For example, OpenMP and CUDA score really high, whereas HIP is still lacking. We found that prompts from either a targeted language such as Fortran or the more general purpose Python can benefit from adding code keywords, while Julia prompts perform acceptably well for its mature programming models (e.g., Threads and CUDA.jl). We expect for these benchmarks to provide a point of reference for each programming model's community. Overall, understanding the convergence of large language models, AI, and HPC is crucial due to its rapidly evolving nature and how it is redefining human-computer interactions.