Skip to main content
SHARE
Publication

Extended universal finite-T renormalization of excitations in a class of one-dimensional quantum magnets...

Publication Type
Journal
Journal Name
Physical Review Letters
Publication Date
Page Number
157204
Volume
100
Issue
15

Temperature dependencies of gap energies and magnon lifetimes are measured in the quasi-onedimensional S = 1/2 gapped quantum magnets CH32CHNH3CuCL3 (IPA-CuCl3, where IPA denotes isopropyl ammonium) and Cu2Cl4  D8C4SO2 (Sul-Cu2Cl4) using inelastic neutron scattering. The results are compared to those found in literature for S = 1 Haldane spin chain materials and to theoretical
calculations for the O3- and ON- quantum nonlinear-models. It is found that when the T = 0 energy gap is used as the temperature scale, all experimental and theoretical curves are identical to within system-dependent but temperature-independent scaling factors of the order of unity. This quasiuniversality extends over a surprising broad T range, at least up to kT ~  1.5.