Skip to main content
SHARE
Publication

Facile benzene reduction promoted by a synergistically coupled Cu–Co–Ce ternary mixed oxide...

Publication Type
Journal
Journal Name
Chemical Science
Publication Date
Page Numbers
5766 to 5771
Volume
11
Issue
22

Hydrogenation of aromatic rings promoted by earth-abundant metal composites under mild conditions is an attractive and challenging subject in the long term. In this work, a simple active site creation and stabilization strategy was employed to obtain a Cu+-containing ternary mixed oxide catalyst. Simply by pre-treatment of the ternary metal oxide precursor under a H2 atmosphere, a Cu+-derived heterogeneous catalyst was obtained and denoted as Cu1Co5Ce5Ox. The catalyst showed (1) high Cu+ species content, (2) a uniform distribution of Cu+ doped into the lattices of CoOx and CeO2, (3) formation of CoOx/CuOx and CeO2/CuOx interfaces, and (4) a mesoporous structure. These unique properties of Cu1Co5Ce5Ox endow it with pretty high hydrogenation activity for aromatic rings under mild conditions (100 °C with 5 bar H2), which is much higher than that of the corresponding binary counterparts and even exceeds the performance of commercial noble metal catalysts (e.g. Pd/C). The synergetic effect plays a crucial role in the catalytic procedure with CeO2 functioning as a hydrogen dissociation and transfer medium, Cu+ hydrogenating the benzene ring and CoOx stabilizing the unstable Cu+ species. This will unlock a new opportunity to design highly efficient earth-abundant metal-derived heterogeneous catalysts via interface interactions.