Skip to main content
SHARE
Publication

Ferromagnetic Cr4PtGa17: A Half-Heusler-Type Compound with a Breathing Pyrochlore Lattice...

by Xin Gui, Erxi Feng, Huibo Cao, Robert Cava
Publication Type
Journal
Journal Name
Journal of the American Chemical Society
Publication Date
Page Numbers
14342 to 14351
Volume
143
Issue
35

We describe the crystal structure and elementary magnetic properties of a previously unreported ternary intermetallic compound, Cr4PtGa17, which crystallizes in a rhombohedral unit cell in the noncentrosymmetric space group R3m. The crystal structure is closely related to those of XYZ half-Heusler compounds, where X, Y, and Z are reported to be single elements only, occupying three different face-centered-cubic sublattices. The new material, Cr4PtGa17, can be most straightforwardly illustrated by writing the formula as (PtGa2)(Cr4Ga14)Ga (X = PtGa2, Y = Cr4Ga14, Z = Ga); that is, the X and Y sites are occupied by clusters instead of single elements. The magnetic Cr occupies a breathing pyrochlore lattice. Ferromagnetic ordering is found below TC ∼ 61 K, by both neutron diffraction and magnetometer studies, with a small, saturated moment of ∼0.25 μB/Cr observed at 2 K, making Cr4PtGa17 the first ferromagnetically ordered material with a breathing pyrochlore lattice. A magnetoresistance of ∼140% was observed at 2 K. DFT calculations suggest that the material has a nearly half-metallic electronic structure. The new material, Cr4PtGa17, the first realization of both a half-Heusler-type structure and a breathing pyrochlore lattice, might pave a new way to achieve novel types of half-Heusler compounds.