Skip to main content
SHARE
Publication

Gate-Controlled Anyon Generation and Detection in Kitaev Spin Liquids...

by Gabor Halasz
Publication Type
Journal
Journal Name
Physical Review Letters
Publication Date
Page Number
206501
Volume
132
Issue
20

Reliable manipulation of non-Abelian Ising anyons supported by Kitaev spin liquids may enable intrinsically fault-tolerant quantum computation. Here, we introduce a standalone scheme for both generating and detecting individual Ising anyons using tunable gate voltages in a heterostructure containing a non-Abelian Kitaev spin liquid and a monolayer semiconductor. The key ingredients of our setup are a Kondo coupling to stabilize an Ising anyon in the spin liquid around each electron in the semiconductor, and a large charging energy to allow control over the electron numbers in distinct gate-defined regions of the semiconductor. In particular, a single Ising anyon can be generated at a disk-shaped region by gate tuning its electron number to one, while it can be interferometrically detected by measuring the electrical conductance of a ring-shaped region around it whose electron number is allowed to fluctuate between zero and one. We provide concrete experimental guidelines for implementing our proposal in promising candidate materials like 𝛼−RuCl3.