Skip to main content
SHARE
Publication

Gaussian approximation of dispersion potentials for efficient featurization and machine-learning predictions of metal–organ...

by Sihoon Choi, David S Sholl, Andrew Medford
Publication Type
Journal
Journal Name
The Journal of Chemical Physics
Publication Date
Page Number
214108
Volume
156
Issue
21

Energy-related descriptors in machine learning are a promising strategy to predict adsorption properties of metal–organic frameworks (MOFs) in the low-pressure regime. Interactions between hosts and guests in these systems are typically expressed as a sum of dispersion and electrostatic potentials. The energy landscape of dispersion potentials plays a crucial role in defining Henry’s constants for simple probe molecules in MOFs. To incorporate more information about this energy landscape, we introduce the Gaussian-approximated Lennard-Jones (GALJ) potential, which fits pairwise Lennard-Jones potentials with multiple Gaussians by varying their heights and widths. The GALJ approach is capable of replicating information that can be obtained from the original LJ potentials and enables efficient development of Gaussian integral (GI) descriptors that account for spatial correlations in the dispersion energy environment. GI descriptors would be computationally inconvenient to compute using the usual direct evaluation of the dispersion potential energy surface. We show that these new GI descriptors lead to improvement in ML predictions of Henry’s constants for a diverse set of adsorbates in MOFs compared to previous approaches to this task.