Skip to main content
SHARE
Publication

Genome resequencing reveals demographic history and genetic architecture of seed salinity tolerance in Populus euphratica...

Publication Type
Journal
Journal Name
Journal of Experimental Botany
Publication Date
Page Numbers
4308 to 4320
Volume
71
Issue
14

Populus euphratica is a dominant tree species in desert riparian forests and possesses extraordinary adaptation to salinity stress. Exploration of its genomic variation and molecular underpinning of salinity tolerance is important for elucidating population evolution and identifying stress-related genes. Here, we identify approximately 3.15 million single nucleotide polymorphisms using whole-genome resequencing. The natural populations of P. euphratica in northwest China are divided into four distinct clades that exhibit strong geographical distribution patterns. Pleistocene climatic fluctuations and tectonic deformation jointly shaped the extant genetic patterns. A seed germination rate-based salinity tolerance index was used to evaluate seed salinity tolerance of P. euphratica and a genome-wide association study was implemented. A total of 38 single nucleotide polymorphisms were associated with seed salinity tolerance and were located within or near 82 genes. Expression profiles showed that most of these genes were regulated under salt stress, revealing the genetic complexity of seed salinity tolerance. Furthermore, DEAD-box ATP-dependent RNA helicase 57 and one undescribed gene (CCG029559) were demonstrated to improve the seed salinity tolerance in transgenic Arabidopsis. These results provide new insights into the demographic history and genetic architecture of seed salinity tolerance in desert poplar.