Skip to main content
SHARE
Publication

Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic ...

Publication Type
Journal
Journal Name
Environmental Science & Technology
Publication Date
Page Numbers
8007 to 8013
Volume
42
Issue
10

This study investigated sorption of uranium and technetium onto aluminum and iron hydroxides during titration of a contaminated groundwater using both Na hydroxide and carbonate as titrants. The contaminated groundwater has a low pH of 3.8 and high concentrations of NO3-, SO42-, Al, Ca, Mg, Mn, trace metals such as Ni and Co, and radionuclides such as U and Tc. During titration, most Al and Fe were precipitated out at pH above ~4.5. U as well as Tc was found to be removed from aqueous phase at pH below ~5.5, but to some extent released at higher pH values. An earlier geochemical equilibrium reaction path model that considered aqueous complexation and precipitation/dissolution reactions predicted mineral precipitation and adequately described concentration variations of Al, Fe and some other metal cations, but failed to predict sulfate, U and Tc concentrations during titration. Previous studies have shown that Fe- and Al-oxyhydroxides strongly sorb dissolved sulfate, U and Tc species. Therefore, an anion exchange model was developed for the sorption of sulfate, U and Tc onto Al and Fe hydroxides. With the additional consideration of the anion exchange reactions, concentration profiles of sulfate, U and Tc were more accurately predicted. Results of this study indicate that consideration of complex reactions such as sorption/desorption on mixed mineral phases, in addition to hydrolysis and precipitation, could improve the prediction of various contaminants during pre- and post-groundwater treatment practices.