Skip to main content
SHARE
Publication

Graphene quantum dots (GQDs)-polyethyleneimine as interlayer for the fabrication of high performance organic solvent nanofilt...

Publication Type
Journal
Journal Name
Chemical Engineering Journal
Publication Date
Page Number
122462
Volume
380

Novel thin film nanocomposite (TFN) organic solvent nanofiltration (OSN) membranes with sandwich-like structure were developed via interfacial polymerization (IP) using both low concentration m-phenylenediamine (MPD) and trimesoyl chloride (TMC), on graphene quantum dots (GQDs)-polyethyleneimine (PEI) modified polyimide substrate surface, and followed by post-IP crosslinking and solvent activation. Such GQDs-interlayered OSN membranes have exhibited a remarkable reduced thickness (about 25 nm) and an ultra-low average surface roughness (less than 2 nm) of their IP skin layers, respectively. Both material features are rarely reported in literature. Meanwhile, our GQDs-interlayered OSN membranes have shown an increased Rhodamine B (479 Da) rejection (from 87.4% to 98.7%) and an increased ethanol permeance (from 33.5 to 40.3 L m−2 h−1 MPa−1) compared with the pristine OSN membrane. Superior solvent resistance was demonstrated after long immersion in pure N, N-dimethylformamide (DMF) at room temperature for 81 days, and at 80  °C for 45 days, and after a long-term consecutively filtration with Rose Bengal (1017 Da) DMF solution at 25  °C for 5 days, without scarifying solute rejection. Antifouling properties during the long-term filtration were also indicated. This paper presents a novel GQDs-interlayered strategy in developing high-performance TFN membranes for OSN application.