Skip to main content
SHARE
Publication

H-mode research in NSTX...

by Rajesh Maingi, Yueng-kay M Peng
Publication Type
Journal
Journal Name
Nuclear Fusion
Publication Date
Page Numbers
969 to 974
Volume
43
Issue
9

H-modes are routinely obtained in the National Spherical Torus Experiment (NSTX) and have become a standard operational scenario. L–H transitions triggered by NBI heating have been obtained over a wide parameter range in Ip, Bt, and e in either lower-single-null (LSN) or double-null (DN) diverted discharges. Edge localized modes are observed in both configurations but the characteristics differ between DN and LSN, which also have different triangularities (δ). An H-mode duration of 500 ms was obtained in LSN, with a total pulse length of ~1 s. Preliminary power threshold studies indicate that the L–H threshold is between 600 kW and 1.2 MW, depending on the target parameters. Gas injector fuelling from the centre stack (i.e. the high toroidal field side) has enabled routine H-mode access, and comparisons with low-field side (LFS) fuelled H-mode discharges show that the LFS fuelling delays the L–H transition and alters the pre-transition plasma profiles. Gas puff imaging and reflectometry show that the H-mode edge is usually more quiescent than the L-mode edge. Divertor infrared camera measurements indicate up to 70% of available power flows to the divertor targets in quiescent H-mode discharges.