Skip to main content
SHARE
Publication

High-level co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: Metabolic engineering and process optimization

by Arthur J Ragauskas
Publication Type
Journal
Journal Name
Bioresource Technology
Publication Date
Page Number
128438
Volume
369
Issue
1

3-Hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO) are value-added chemicals with versatile applications in the chemical, pharmaceutical, and food industries. Nevertheless, sustainable production of 3-HP and 1,3-PDO is often limited by the lack of efficient strains and suitable fermentation configurations. Herein, attempts have been made to improve the co-production of both metabolites through metabolic engineering of Escherichia coli and process optimization. First, the 3-HP and 1,3-PDO co-biosynthetic pathways were recruited and optimized in E. coli, followed by coupling the pathways to the transhydrogenase-mediated cofactor regeneration systems that increased cofactor availability and product synthesis. Next, pathway rebalancing and block of by-product formation significantly improved 3-HP and 1,3-PDO net titer. Subsequently, glycerol flux toward 3-HP and 1,3-PDO synthesis was maximized by removing metabolic repression and fine-tuning the glycerol oxidation pathway. Lastly, the combined fermentation process optimization and two-stage pH-controlled fed-batch fermentation co-produced 140.50 g/L 3-HP and 1,3-PDO, with 0.85 mol/mol net yield.