Skip to main content
SHARE
Publication

Hybrid Organic–Inorganic Halides (C 5 H 7 N 2 ) 2 MBr 4 (M = Hg, Zn) with High Color Rendering Index and High-Efficiency Wh...

Publication Type
Journal
Journal Name
Chemistry of Materials
Publication Date
Page Numbers
2983 to 2991
Volume
31
Issue
8

Low-dimensional hybrid organic–inorganic materials (HOIMs) are being widely investigated for their unique optoelectronic properties. Some of them exhibit broadband white-light (WL) luminescence upon UV excitation, providing a potential for the fabrication of single-component white-light-emitting diodes. Here, we report new examples of low-dimensional HOIMs, based on 4-aminopyridinium (4AMP) and group 12 metals (Hg and Zn), for single-component WL emission. The 4AMP cation containing structures feature HgBr4 and ZnBr4 isolated tetrahedra in (C5H7N2)2HgBr4·H2O (1) and (C5H7N2)2ZnBr4 (2), respectively. The presence of isolated molecular units in the zero-dimensional structures results in strongly localized charges and bright WL luminescence with corresponding Commission Internationale de l’Eclairage color coordinates of (0.34, 0.38) and (0.25, 0.26), correlated color temperatures of 5206 K (1) and 11 630 K (2), and very high color rendering indexes (CRI) of 87 (1) and 96 (2). The visibly bright WL emission at room temperature is corroborated with high measured photoluminescence quantum yield values of 14.87 and 19.18% for 1 and 2, respectively. Notably, the high CRI values for these new HOIMs exceed the commercial requirements and produce both “warm” and “cold” WL depending on the metal used (Hg or Zn). Based on temperature- and powder-dependent photoluminescence (PL), PL lifetimes measurements and density functional theory calculations, the broadband WL emission is assigned to the 4AMP organic molecules emission and self-trapped states.