Skip to main content
SHARE
Publication

Hydrothermal synthesis of lanthanide rhenium oxides: Structures and magnetism of Ln2Re2O7(OH) (Ln = Pr, Nd) and Ln4Re2O11 (Ln...

Publication Type
Journal
Journal Name
Journal of Solid State Chemistry
Publication Date
Page Numbers
149 to 158
Volume
275
Issue
1

The reactions of Ln2O3 (Ln = LaLu) with ReO2 were examined in high temperature hydrothermal water (650 °C). In all cases the rhenium oxide was added in a three-fold excess. No external mineralizer was needed and the rhenate itself acted as a sufficient mineralizer to form high quality single crystals of several crystalline products. These form in good yield with compositions varying as a function of the size of the rare earth ion. The largest sesquioxide, La2O3, forms the well-known La4Re6O19 phase, but when Ln = Nd or Pr, a new product, Ln2Re2O7(OH), is isolated. Reactions with Ln = SmTb form Ln4Re2O11, and those with DyLu form Ln2ReO5. The new Ln2Re2O7(OH) series was characterized as a new structure type by single crystal X-ray diffraction. This structure features a tetrameric Re4O16 cluster embedded in a lanthanide oxide framework. Additional detailed structural data is also provided for Tb4Re2O11 and Eu4Re2O11, which were not previously reported for the Ln4Re2O11 family. In Ln2Re2O7(OH), no direct ReRe bond (ReRe = 2.60 Å) is observed while Ln4Re2O11 appears to possess a rhenium-rhenium double bond with a ReRe distance of 2.42 Å. Single crystal Raman data supports both of these characterizations. Magnetic data is reported for Ln2Re2O7(OH) and Tb4Re2O11, and their behavior appears to be dominated by the f-element magnetic moments. At low temperatures Tb4Re2O11 displays possible canted antiferromagnetic coupling.