Skip to main content
SHARE
Publication

Imaging Strain-Localized Single-Photon Emitters in Layered GaSe below the Diffraction Limit

Publication Type
Journal
Journal Name
ACS Nano
Publication Date
Page Numbers
23455 to 23465
Volume
17
Issue
23

Nanoscale strain control of exciton funneling is an increasingly critical tool for the scalable production of single photon emitters (SPEs) in two-dimensional materials. However, conventional far-field optical microscopies remain constrained in spatial resolution by the diffraction limit and thus can provide only a limited description of nanoscale strain localization of SPEs. Here, we quantify the effects of nanoscale heterogeneous strain on the energy and brightness of GaSe SPEs on nanopillars with correlative cathodoluminescence, photoluminescence, and atomic force microscopy, supported by density functional theory simulations. We report the strain-localized SPEs have a broad range of emission wavelengths from 620 to 900 nm. We reveal substantial strain-controlled SPE wavelength tunability over a ∼100 nm spectral range and 2 orders of magnitude enhancement in the SPE brightness at the pillar center due to Type-I exciton funneling. In addition, we show that radiative biexciton cascade processes contribute to observed CL photon superbunching. Also, the GaSe SPEs show excellent stability, where their properties remain unchanged after electron beam exposure. We anticipate that this comprehensive study on the nanoscale strain control of two-dimensional SPEs will provide key insights to guide the development of truly deterministic quantum photonics.