Skip to main content
SHARE
Publication

Impact of Biodiesel, Renewable Diesel, 1-Octanol, Dibutoxymethane, n-Undecane, Hexyl hexanoate and 2-Nonanone with Infrastruc...

by Michael D Kass, Christopher J Janke, Eric J Nafziger
Publication Type
Journal
Journal Name
SAE Technical Paper Series
Publication Date
Page Number
0487
Volume
2022
Issue
01

In this study the volume and hardness were measured for thermoplastics and thermosetting resins with diesel containing up to 30% of the following blend stocks: biodiesel, renewable diesel, n-undecane, dibutoxymethane, 1-octanol, hexyl hexanoate, and 2-nonanone. Thermoplastics included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), polybutylene terephthalate (PBT), polypropylene (PP), high density polyethylene (HDPE), nylons, acetals, polyetherimide (PEI), polyetheretherketone (PEEK), a PET co-polymer, polyphthalamides (PPAs), polyarylamide (PARA) and ethylene tetrafluoroethylene (ETFE). Three thermosetting resins were also evaluated. The material specimens were exposed to the test fuels under ambient conditions for 16 weeks. In general, the volume and hardness of the specimens were relatively unaffected following exposure to the test fuels; however, n-undecane produced significant swelling in polypropylene and may not be suitable for use with this material. N-undecane, along with hexyl hexanoate and 2-nonanone also caused low levels of swelling in nylon, which was not significant enough to preclude the use of nylons in sealing applications with these fuels.