Skip to main content
SHARE
Publication

The Impact of Fullerene Structure on Its Miscibility with P3HT and Its Correlation of Performance in Organic Photovoltaics...

by Huipeng Chen, Jeff Peet, Yu-che Hsiao, Bin Hu, Mark D Dadmun
Publication Type
Journal
Journal Name
Chemistry of Materials
Publication Date
Page Numbers
3993 to 4003
Volume
26

Neutron reflectivity experiments are utilized to obtain the miscibility limit of four different fullerenes, bis-PCBM, ICBA, thio-PCBM, and PC70BM, in poly(3-hexylthiophene) (P3HT). The intermixing of P3HT and fullerene bilayers is monitored by neutron reflectivity before and after thermal annealing, providing quantification of the miscibility and interdiffusion of the fullerene within P3HT. These results
indicate that the miscibility limit of these fullerenes in P3HT ranges from 11% to 26%, where the bis-adduct fullerenes exhibit lower miscibility in P3HT, which is also verified by small angle neutron scatting (SANS). The in-plane morphology of the P3HT:fullerene mixtures was also examined by
SANS, which shows a decrease in domain size and an increase in the specific interfacial area between the fullerene and the polymer with the bis-fullerenes. Correlation of miscibility and morphology to device performance indicates that polymer/
fullerene miscibility is crucial to rationally optimize the design of fullerenes for use in organic photovoltaics. Bis-PCBM has a higher open circuit voltage (Voc) than PC60BM with P3HT; however, device performance of bis-PCBM based devices is lower than that of PC60BM based devices. This decrease in performance is attributed to the lower miscibility of bis-PCBM in P3HT,
which decreases the probability of exciton dissociation and enhances the recombination of free charge carriers in the miscible region. Moreover, the minimum distance between fullerenes in the miscible region to facilitate intermolecular transport is identified as ∼11 Å.