Skip to main content
SHARE
Publication

An Improved Energy Deposition Model in MPACT and Explicit Heat Generation Coupling with CTF

Publication Type
Conference Paper
Book Title
Proceedings of Physor 2020
Publication Date
Page Numbers
1568 to 1575
Conference Name
PHYSOR 2020: Transition to a Scalable Nuclear Future
Conference Location
Cambridge, United Kingdom
Conference Sponsor
ANS
Conference Date
-

The default energy deposition model in the CASL neutronics code MPACT assumes all fission energy is deposited locally in fuel rods. Furthermore, equilibrium delayed energy release is assumed for both steady-state and transient calculations. These approximations limit the accurate representation of the heat generation distribution in space and its variations over time, which are essential for power distribution and thermal-hydraulic coupling calculations. In this paper, an improved energy deposition model is presented in both the spatial and time domains. Spatially, the energy deposition through fission, neutron capture, and slowing-down reactions are explicitly modeled to account for the heat generation from all regions of a reactor core, and a gamma smearing scheme is developed that utilizes the gamma sources from neutron fission and capture. In the time domain, the delayed energy release is modeled by solving an additional equation of delayed heat emitters, similar to the equation of delayed neutron precursors.To allow the explicit heat generation coupling, the interfaces between MPACT and CTF were updated to transfer separate heat sources for different material regions (fuel, clad, moderator and guide tube). The results show that the distributions of the energy deposition between MPACT and MCNP agree very well for various 2-D assembly and quarter-core problems without TH feedback. The MPACT/CTF coupled calculation for the hot full power quarter-core case exhibited a reduced peak pin power by 2.3% and a reduced peak fuel centerline temperature by 17 K when using the explicit energy deposition and heat transfer. The new model also shows a maximum 100 pcm keff effect on assembly depletion problems and an increased overall energy release by 7% in a PWR reactivity-initiated accident (RIA) problem.