Skip to main content
SHARE
Publication

Interfacial Reactions and Performance of Li 7 La 3 Zr 2 O 12 -Stabilized Li–Sulfur Hybrid Cell...

Publication Type
Journal
Journal Name
ACS Applied Materials & Interfaces
Publication Date
Page Numbers
42042 to 42048
Volume
11
Issue
45

Herein, we report on the characterization of a Li–S hybrid cell containing a garnet solid electrolyte (Li7La3Zr2O12, LLZO) and conventional liquid electrolyte. While the liquid electrolyte provided ionically conductive pathways throughout the porous cathode, the LLZO acted as a physical barrier to protect the Li metal anode and prevent polysulfide shuttling during battery operation. This hybrid cell exhibited an initial capacity of 1000 mAh/g(S) and high Coulombic efficiency (>99%). The interface between the liquid electrolyte and LLZO was studied using electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy (XPS). These results indicate that a spontaneous interfacial reaction layer formed between the LLZO and liquid electrolyte. XPS depth profiling experiments indicate that this layer consisted of Li-enriched phases near the surface (e.g., Li2CO3) and intermediate Li–La–Zr oxides in subsurface regions. The reaction layer extended well beyond the LLZO surface, and bulk pristine LLZO was not observed even at the deepest sputtering depths used in this study (∼90 nm). Overall, these results highlight that developing stable electrode/electrolyte interfaces is critical for solid-state batteries and their hybrids.