Skip to main content
SHARE
Publication

Inverse Method for Estimating the Spatial Variability of Soil Particle Size Distribution from Observed Soil Moisture...

by Feifei Pan, Christa Peters-lidard, Anthony W King
Publication Type
Journal
Journal Name
Journal of Hydrologic Engineering
Publication Date
Page Numbers
931 to 938
Volume
15
Issue
11

Soil particle size distribution (PSD) (i.e., clay, silt, sand, and rock contents) information is one of critical factors for understanding water cycle since it affects almost all of water cycle processes, e.g., drainage, runoff, soil moisture, evaporation, and evapotranspiration. With information about soil PSD, we can estimate almost all soil hydraulic properties (e.g., saturated soil moisture, field capacity, wilting point, residual soil moisture, saturated hydraulic conductivity, pore-size distribution index, and bubbling capillary pressure) based on published empirical relationships. Therefore, a regional or global soil PSD database is essential for studying water cycle regionally or globally. At the present stage, three soil geographic databases are commonly used, i.e., the Soil Survey Geographic database, the State Soil Geographic database, and the National Soil Geographic database. Those soil data are map unit based and associated with great uncertainty. Ground soil surveys are a way to reduce this uncertainty. However, ground surveys are time consuming and labor intensive. In this study, an inverse method for estimating mean and standard deviation of soil PSD from observed soil moisture is proposed and applied to Throughfall Displacement Experiment sites in Walker Branch Watershed in eastern Tennessee. This method is based on the relationship between spatial mean and standard deviation of soil moisture. The results indicate that the suggested method is feasible and has potential for retrieving soil PSD information globally from remotely sensed soil moisture data.