Skip to main content
SHARE
Publication

Investigating the Role of VR in a Simulation-Based Medical Planning System for Coronary Interventions...

Publication Type
Conference Paper
Book Title
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
Publication Date
Page Numbers
366 to 374
Volume
11768
Conference Name
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2019)
Conference Location
Shenzhen, China
Conference Sponsor
Various
Conference Date
-

Virtual reality (VR) based computational fluid dynamics (CFD) simulations are emerging as a viable solution to guide complex surgical or invasive procedures, such as percutaneous coronary intervention (PCI), as they enable a realistic first-person experience of underlying patient anatomy and physiology. Realistic VR experience can be assessed by immersion, an objective VR property. However, it remains unclear how immersion influences virtual PCI procedures and what level of immersion is required. This study answers both these questions by evaluating the application of a CFD-based VR system and comparing semi-immersive and fully immersive VR displays. Nine patient-specific arterial models were simulated using CFD and used to conduct a quantitative user evaluation (n = 31) with both types of VR displays. The findings of this study reveal that VR immersion significantly improves the accuracy of simulated stent placement in complex arterial geometries, relative to traditional desktops with no immersion (p < 0.05). Higher accuracy is noted by the use of semi-immersive VR display, which offers higher display fidelity as compared to the fully immersive VR display (p < 0.05). Interestingly, CFD data mapped on to arterial geometries strongly influences the location of stent placement. This finding is demonstrated by the lack of significant accuracy deviation between the two immersive displays when CFD data is shown. This study provides compelling evidence that a CFD-based VR system rendered on semi-immersive displays can enable more accurate and efficient stent placement.