Skip to main content
SHARE
Publication

A Large Eddy Simulation Study of Flow Turbulence, Alumina Transport, and Bath Temperature Evolution in Conventional Aluminum-Smelting Cell Using OpenFOAM

by Nithin S Panicker, Rajneesh Chaudhary, Vivek M Rao, Marc Olivier Delchini, Prashant K Jain
Publication Type
Journal
Journal Name
Metallurgical and Materials Transactions B
Publication Date
Page Numbers
2407 to 2426
Volume
53
Issue
5

In this study, a Large Eddy Simulation (LES) of the aluminum-smelting process is performed using OpenFOAM. To understand the coupled behavior of heat transfer, mass transfer, and flow of the smelting process, a multi-physics computational fluid dynamics (CFD) model based on the Eulerian–Eulerian multi-fluid approach is adopted. The model accounts for CO2 bubble and magnetohydrodynamics (MHD)-driven flow, along with alumina dissolution, transport, and bath temperature evolution. The simulation predictions show small-scale turbulent vortical structures in the anode–cathode space caused by combined effect of MHD and CO2 bubble-bath interactions and relatively large-scale asymmetric vortices in the inter-anode space caused by the CO2 bubble-bath interactions. The vortex formation at the edges of the anodes evidently aids in transporting alumina from the central channel to the bottom of the anodes and prevents accumulation of gas bubbles in the periphery of the anode bottom. Symmetric bath cold spots are observed in the vicinity of the feeder. Cold spots are also observed in the anode–cathode distance space below the anode bottom due to the transport of undissolved solid to this region by the flow. The findings from the work are useful in developing and designing alumina-feeding strategy leading to reduced anode effects and smooth operation of the cell. The work also highlights the important flow structures in conventional aluminum-smelting cell.