Skip to main content
SHARE
Publication

Lignin-based carbon quantum dots with high fluorescence performance prepared by supercritical catalysis and solvothermal treatment for tumor-targeted labeling

by Arthur J Ragauskas
Publication Type
Journal
Journal Name
Advanced Composites and Hybrid Materials
Publication Date
Page Numbers
1 to 14
Volume
6
Issue
2

The poor fluorescence performance of lignin-based carbon quantum dots (L-CQDs) prepared using the bottom-up method has hindered their development. In this study, a two-step strategy was proposed to efficiently enhance the fluorescence properties of L-CQDs. Lignin was first cracked using an ethanol supercritical/noble metal catalyst; then, the L-CQDs were prepared with the cracked lignin fragments as carbon precursors without adding any modified reagents. Compared with the OL-CQDs prepared by the traditional one-pot hydrothermal method, the L-CQDs-1 prepared from CL-1 containing much low molecular weight compounds, and have photoluminescence (increased from 63 to 975) and excellent up-conversion photoluminescence (enhanced by 16.3 to 963), which significantly enhanced by about 15 times and 60 times, respectively. They can emit bright blue fluorescence under both ultraviolet and near-infrared light irradiation owing to a large amount of surface defects caused by the rich compound composition. When L-CQDs-1 were combined with, and quenched by folic acid (FA), the prepared FA@L-CQDs-1 show the ability to target and label tumor cells. This study opens new avenues for the preparation of L-CQDs with high fluorescence performance using lignocellulosic material without heteroatom additives.