Skip to main content
SHARE
Publication

Lithium Vanadium Oxide (Li1.1V3O8) Coated with Amorphous Lithium Phosphorous Oxynitride (LiPON): Role of Material Morphology ...

Publication Type
Journal
Journal Name
Journal of the Electrochemical Society
Publication Date
Volume
164
Issue
7

In the present work, lithium vanadium oxide (Li1.1V3O8) particles synthesized at two different temperatures were coated with an amorphous lithium phosphorous oxynitride (LiPON) film for the first time, and the effects of the LiPON coating on the electrochemistry of the Li1.1V3O8 materials with different morphologies were systematically investigated by comparing uncoated Li1.1V3O8 and Li1.1V3O8 coated with LiPON of various thicknesses. Galvanostatic discharge-charge cycling revealed increased functional capacity for the LiPON-coated materials. Post-cycling electrochemical impedance spectroscopy showed that LiPON-coated Li1.1V3O8 materials developed less interfacial resistance with extended cycling, rationalized by vanadium migration into the LiPON coating seen by electron energy loss spectra. Post-mortem quantitative analysis of the anodes revealed more severe vanadium dissolution for the more irregularly shaped Li1.1V3O8 materials with less LiPON coverage. Thus, this study highlights the specific benefits and limitations of LiPON coatings for stabilizing a moderate voltage Li1.1V3O8 cathode material under extended cycling in liquid electrolyte, and describes a generally applicable approach for comprehensive characterization of a composite electroactive material which can be used to understand interfacial transport properties in other functional systems.