Skip to main content
SHARE
Publication

Local probing of ferroelectric and ferroelastic switching through stress-mediated piezoelectric spectroscopy...

Publication Type
Journal
Journal Name
Advanced Materials Interfaces
Publication Date
Volume
3
Issue
7

The role of local strains is fundamental to the large effective piezoelectric and ferroelectric response of thin films. Therefore a method to investigate local strain-induced phenomena is imperative. Here, pressure induced domain reorganization is reported in lead zirconate titanate films with composition near the morphotropic phase boundary. An approach is thus demonstrated to simultaneously study the role of applied mechanical pressure on multiple local properties of the film. In particular, the modification of hysteresis loops collected at different tip pressures is consistent with first mostly ferroelastic and then ferroelectric dominated reorientation of domains under increasing applied pressure. The pressure induced domain writing is also investigated through phase field simulations where the applied pressure is generally found to increase the in-plane polarization of the domains with respect to the out-of-plane component, corroborating the experimental observations. The approach developed here has the potential to explore other hysteretic phenomena and phase transitions in a spatially resolved manner with varying local pressure.