Skip to main content
SHARE
Publication

Long-Term Corrosion Studies Of Pine Derived Bio-Oil And Blends With Heavy Fuel Oil...

Publication Type
Conference Paper
Book Title
TAPPI PEERS Conference Proceedings
Publication Date
Publisher Location
Atlanta, Georgia, United States of America
Conference Name
TAPPI PEERS/IBBC
Conference Location
Atlanta, Georgia, United States of America
Conference Sponsor
TAPPI
Conference Date
-

Biomass derived liquid fuels offer a means to reduce greenhouse gas emissions compared to those produced by combustion of petroleum derived liquid fuels. However, the corrosivity of bio-oils toward the less expensive structural materials creates a material selection problem for designers of storage tanks and combustion systems. Samples of candidate structural materials are being exposed for thousands of hours in multiple fast pyrolysis bio-oils and conditions to evaluate the corrosion resistance of these materials. One method to mitigate the corrosivity of bio-oils and speed their adoption, while also decreasing the pollution issues associated with low quality petroleum derived fuels, is to utilize blends of bio-oil and heavy fuel oil in engines currently solely burning a petroleum-based fuel. In addition to the corrosion studies conducted in 100% bio-oil, studies were also conducted with blends of the fast pyrolysis bio-oil produced from pine tree components with a heavy fuel oil that is used in ocean-going ships. This bio-oil had a very high carboxylic acid content which made it very corrosive to carbon and 2ΒΌ Cr-1 Mo steel and even 409 stainless steel. The heavy fuel oil was not corrosive to carbon steel, but its sulfur content makes it a significant pollution producer and particularly undesirable for use near coastlines. Corrosion tests were conducted with the individual components and with various blends of the two liquid fuels. Studies showed a significantly lower corrosivity of the blends than would be projected assuming linear mixing behavior. Adoption of such blends holds the potential to reduce production of sulfur-containing exhaust gases as well as carbon dioxide from non-renewable fuels.