Skip to main content
SHARE
Publication

Low-Frequency Stability Analysis of Inverter-Based Islanded Multiple-Bus AC Microgrids Based on Terminal Characteristics...

by Wenchao Cao, Yiwei Ma, Fei Wang, Leon M Tolbert, Yaosuo Xue
Publication Type
Journal
Journal Name
IEEE Transactions on Smart Grid
Publication Date
Page Numbers
1 to 15
Volume
11
Issue
1

For system planning of three-phase inverter-based islanded ac microgrids, the low frequency instability issue caused by interactions of inverter droop controllers is a major concern. When internal control information of procured commercial inverters is unknown, impedance-based small-signal stability criteria facilitate prediction of resonances in medium and high frequency ranges, but they usually assume the grid fundamental frequency as constant and thus they are incapable of analyzing the low-frequency oscillation of the fundamental frequency in islanded microgrids. Aiming at solving this issue, this paper proposes two stability analysis methods based on terminal characteristics of inverters and passive connection network including the dynamics of the fundamental frequency for analysis of low-frequency stability in islanded multiple-bus microgrids. Based on the Component Connection Method (CCM) to systematically separate inverters from the passive connection network, a general approach is developed to model the microgrid as a multiple-input-multiple-output (MIMO) negative feedback system in the common system d-q reference frame. By applying the generalized Nyquist stability criterion (GNC) to the return-ratio and return-difference matrices of the MIMO system model, the low-frequency stability related to the fundamental frequency can be analyzed using the measured terminal characteristics of inverters. Analysis and simulation of a 37-bus microgrid verify the effectiveness of the proposed stability analysis methods.