Skip to main content
SHARE
Publication

Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors...

by D. Mandrus, Jiaqiang Yan, Zhixian Zhou
Publication Type
Journal
Journal Name
Nano Letters
Publication Date
Page Numbers
1896 to 1902
Volume
16
Issue
3

We report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of similar to 0.3 k Omega mu m high on/off ratios up to >10(9), and high drive currents exceeding 320 mu A mu m(-1). These favorable characteristics are combined with a two-terminal field-effect hole mobility mu(FE) approximate to 2 X 10(2) cm(2) V(-1)s(-1) at room temperature, which increases to >2 X 10(3) cm(2) V-1 s(-1) at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics.