Skip to main content
SHARE
Publication

Mechanical Analysis of Carbon Fiber Retaining Sleeve for A High-speed Outer Rotor SPM Electric Motor Design

by Lianshan Lin, Himel Barua, Vandana P Rallabandi, Burak Ozpineci, Steve E Bullock
Publication Type
Conference Paper
Book Title
2023 IEEE Energy Conversion Congress and Exposition (ECCE)
Publication Date
Page Numbers
5303 to 5307
Publisher Location
New Jersey, United States of America
Conference Name
IEEE Energy Conversion Congress and Exposition (ECCE 2023)
Conference Location
Nashville, Tennessee, United States of America
Conference Sponsor
IEEE
Conference Date
-

Outer rotor motors can be designed with a larger airgap diameter than inner rotor motors for the same overall diameter and therefore provide higher torque which makes them ideal for high torque space constrained applications. This advantage fits well with the increasing demand of high-speed electric machines in many applications due to their inherent high-power density. However, increasing the motor speed results in significant centrifugal loads for the outer rotor motor design. Layers of carbon fiber sleeve winding on the rotor outer surface is necessary to guarantee its structural integrity without introducing too much weight on the motor itself. In this paper, we studied the mechanical stress of a carbon fiber retaining sleeve in a surface permanent magnet outer rotor motor that spins up to 20,000 RPM. Analytical results from finite element method (FEM) confirmed that the maximum stress experienced by the carbon fiber sleeve was under the material’s yield strength. The proposed sleeve will allow this outer rotor motor to operate at high speeds.