Skip to main content
SHARE
Publication

Metal/Ion Interactions Induced p–i–n Junction in Methylammonium Lead Triiodide Perovskite Single Crystals...

Publication Type
Journal
Journal Name
Journal of the American Chemical Society
Publication Date
Page Numbers
17285 to 17288
Volume
139
Issue
48

Hybrid perovskites, as emerging multifunctional semiconductors, have demonstrated dual electronic/ionic conduction properties. We report a metal/ion interaction induced p-i-n junction across slightly n-type doped MAPbI3 single crystals with Au/MAPbI3/Ag configuration based on interface dependent Seebeck effect, Hall effect and time-of-flight secondary ion mass spectrometry analysis. The organic cations (MA+) interact with Au atoms, forming positively charged coordination complexes at Au/MAPbI3 interface, whereas iodine anions (I–) can react with Ag contacts, leading to interfacial ionic polarization. Such metal/ion interactions establish a p-doped region near the Au/MAPbI3 interface due to the formation of MA+ vacancies, and an n-doped region near the Ag/MAPbI3 interface due to formation of I– vacancies, consequently forming a p-i-n junction across the crystal in Au/MAPbI3/Ag configuration. Therefore, the metal/ion interaction plays a role in determining the surface electronic structure and semiconducting properties of hybrid perovskites.