Skip to main content
SHARE
Publication

Microstructure and Mechanical Properties of Intercritically Treated Grade 91 Steel...

by Yiyu Wang, Wei Zhang, Yong Chae Lim, Yanli Wang, Zhili Feng
Publication Type
Journal
Journal Name
Materials
Publication Date
Page Number
3985
Volume
13
Issue
18

Premature creep failures at the intercritical heat affected zone (ICHAZ) of creep-resistant steel weldments have been frequently reported. However, the creep degradation mechanism of different microstructure constituents in ICHAZ is complicated and needs further clarification. In this work, Grade 91 steel was intercritically heat-treated at a temperature (860 °C) between the critical temperatures AC1 and AC3, and a correlation between microstructure and mechanical properties of the heat-treated specimen was built. The effects of austenitization and tempering resulting from the intercritical treatment (IT) differentiated the local strain energies between the two microstructure constituents: newly transformed martensite (NTM) and over-tempered martensite (OTM). The formation of NTM grains led to a hardness increase from 247 HV0.5 in the base metal to 332 HV0.5 in the IT specimen. The ultimate tensile strength (UTS) increased from 739 MPa in the base metal to 1054 MPa in the IT specimen. Extensive growth of the OTM grains and rapid recovery of NTM grains took place simultaneously in the IT specimen during a typical tempering at 760 °C. These microstructure degradations led to a lowered hardness of 178 HV0.5, a reduced UTS of 596 MPa, and a poor creep resistance with a minimum creep strain rate of 0.49 %/h at 650 °C in an IT + tempering (ITT) specimen.