Skip to main content
SHARE
Publication

Mobiliazation of colloidal ferrihydrite particles in porous media - An inner-sphere complexation approach...

by Abbette Hofmann, Liyuan Liang
Publication Type
Journal
Journal Name
Geochimica et Cosmochimica Acta
Publication Date
Page Numbers
5847 to 5861
Volume
71
Issue
24

Prediction of colloid release and transport as affected by reactive species remains a significant challenge for field applications. In this paper, we report experimental and modeling results of ferrihydrite colloid release under the influence of citrate species. Using a 3-plane surface complexation model, equilibrium constants were obtained for the three proposed inner-sphere complexes by fitting a citrate adsorption isotherm on ferrihydrite at pH 4, and a pH adsorption envelop with 0.64 mM citrate. The constants were used in a reactive transport model for simulating reaction fronts of dissolved species during injection of citrate in ferrihydrite-coated quartz columns. Simulation results show that sorption alone may not adequately describe the breakthrough curves. Inclusions of ferrihydrite dissolution and re-adsorption of Fe(III) improve the prediction of dissolved species transport. Additionally, matrix diffusion may be needed for improved prediction. For the release of colloidal iron oxides it was shown that both oxide dissolution and interfacial repulsion controlled the process during complete breakthrough. However, the peak release of colloids, which occurred during the actual breakthrough of dissolved species, was mainly brought about by electric double layer forces. These particles underwent detachment-deposition-detachment cycles along the flow path, and emerged in the effluent with the major reaction front. To quantitatively predict colloid release, a semiempirical linear correlation was established, linking the calculated electric potential to experimental colloid release rates. The model may be applied to the prediction and scaling of aquifer remediation studies involved in the injection of organic ligands to mobilize particle bound contaminants.